1. 化学中的红移和蓝移是什么意思
你应该指的是“谱线的红移和蓝移是什么意思?”
我的解释如下:
红移,当光源向观测者接近时,接受频率降低,相当于向红端偏移,称为“红移”。
蓝移,当光源向观测者接近时,接受频率增高,相当于向蓝端偏移,称为“蓝移”。
红移是物体的电磁辐射由于某种原因波长增加的现象,蓝移就是最大吸收波长向短波长方向。蓝移(或紫移,hypsochromic
shift
or
blue
shift)吸收峰向短波长移动。空间阻碍使共轭体系破坏,max蓝移,
max减小。
如-COOR基团,能产生紫外-可见吸收的官能团,如一个或几个不饱和基团,或不饱和杂原子基团,C=C,
C=O,
N=N,
N=O等称为生色团(chromophore)
助色团(auxochrome):本身在200
nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。
一般助色团为具有孤对电子的基团,如-OH,
-NH2,
-SH等。
含有生色团或生色团与助色团的分子在紫外可见光区有吸收并伴随分子本身电子能级的跃迁,不同官能团吸收不同波长的光。
你可以看一下这个参考资料
http://wenku..com/view/d69e94dba58da0116c1749b7.html
2. 红移和蓝移是什么啊
所谓红移,最初是针对机械波而言的,即一个相对于观察者运动着的物体离的越远发出的声音越浑厚(波长比较长),相反离的越近发出的声音越尖细(波长比较短)。后来,美国天文学家哈勃把一个天体的光谱向长波(红)端的位移叫做多普勒红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。换句话说,由于多普勒红移现象的存在,从这个意义上来讲,宇宙不是无限的,而是有界的,即天体红移的速度等于光速的地带就是宇宙的边缘和界限了,超过了这个界限,也就超过了光速,光线也就因此永远无法达到我们的视界,那就不是我们这个世界了,到底是怎样只有上帝才知道。现在,根据科学测定,宇宙的年龄大约是150亿年,这个既是它的年龄(时间),其实也是它的空间长度,即150亿光年是我们观察太空理论上能达到的最远距离了,我们现在看到的距离地球150亿光年的地方恰恰就是宇宙诞生时的镜像。150亿年前,在大爆炸的奇点,时间和空间获得的最完美的统一,那一点(或那一刻)即是我们整个宇宙的开端。当光源向观测者接近时,接受频率增高,相当于向蓝端偏移,称为“蓝移”,也就是最大吸收波长向短波长方向。 蓝移(或紫移,hypsochromic shift or blue shift)是吸收峰向短波长移动。 例如-COOR基团,能产生紫外-可见吸收的官能团,如一个或几个不饱和基团,或不饱和杂原子基团,C=C, C=O, N=N, N=O等称为生色团(chromophore); 助色团(auxochrome):本身在200 nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。 一般助色团为具有孤对电子的基团,如-OH, -NH2, -SH等。 含有生色团或生色团与助色团的分子在紫外可见光区有吸收并伴随分子本身电子能级的跃迁,不同官能团吸收不同波长的光。 介绍一下红移(red shift) 一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。 光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。
3. 天文学中的红移是什么意思
红移分为两类:1.多普勒红移:物体和观察者之间的相对运动可以导致红移,与此相对应的红移称为多普勒红移,是由多普勒效应引起的。2.重力红移:根据广义相对论,光从重力场中发射出来时也会发生红移的现象。这种红移称为重力红移.
4. 介绍一下蓝移和红移
一、恒星、星系光谱的移动是多谱勒效应的必然结果。比如说有一个星系向我们的银河系靠拢那它的光谱就会向波长短,频率高紫色一方移动,这就叫蓝移(或紫移)。
而当它远离我们而去时,它的光谱就会向波长长,频率低的红色一方移动,这就叫红移。
不过大多数的天体都是红移,天文上把红移和蓝移(或紫移)统称红移,而蓝移(或紫移)就在它的前面加一个“负”号。
像本星系中的M31、M32、M33、NGC147、NGC185、NGC6822、IC1613都是蓝移(或紫移),就是说它们是向着我们移动的。http://www.twg.com.cn/html/moles/newbb/viewtopic.php?post_id=13506
二、
在宇宙中高速航行,光行差效应和其它效应的组合,还会造成绝世美景。在飞船速度达到97%以上后,通过舷窗向后看,一个星星也看不到。原来,所与星星都跑到飞船前面去了,而且一个个都改变了原来的颜色,按蓝、白、黄、橙、红色,从正前方中心点向两边呈弯弓状排开,真像旧戏中主帅出场时,站在舞台两边跑龙套的队伍。其实,这些比拟都是蹩脚的,它就是用言辞难以形容的星虹!
星星都跑到飞船前面去了,这当然是光行差效应,而星星改变颜色则是光的多普勒效应造成的。由于星光与宇宙飞船有相对运动,它们的波长和频率会发生变化。在飞船后面的星星,远离飞船而去,星光的波长变长,频率变小,因此,其光谱向红端移动,即发生“红移”,颜色逐渐变红;而在飞船前面的星星,高速向飞船靠近,星光的波长则缩短,频率增高,因此,其光谱向蓝端移动,即发生“蓝移”,颜色逐渐变蓝。由于在飞船正前方的星光,特别是视野中央最前方的星光,相对飞船而来的速度最高,蓝移最大,不管原来是什么颜色,都因蓝移而一律呈蓝白颜色。而飞船后边的星光,由于都以极高速度远离而去,则不管原来是什么颜色,都一律按远近距离呈黄、橙、红色排列,这就形成了星虹。
在宇宙飞船的速度无限接近光速时,就像在地球上日落西山之后,天空逐渐变暗一样,在宇宙飞船前面的星虹逐渐消失,整个宇宙空间逐渐黑暗下来。
就在这时,最后的奇迹出现了,在飞船前方出现一个光点,像是在黑暗中指引宇宙飞船前进方向的灯塔。
这又是为什么?原来,这时在飞船前后的星光,都分别蓝移或红移出了可见光波段,看不见了,而宇宙大爆炸时遗留在空间的微波背景辐射却频移到了可见光波段,并集中在正前方形成一个亮点http://www.kepu.net.cn/gb/beyond/spaceflight/space_future/200311190025.html
三、没有蓝移天体的原因(图解)
如果地球靠近宇宙的边缘(图9)http://www.repulsion.org.cn/c701.htm,
那么位于A 点的天体所发出的光,对于
地球上的观测者来说,斥力蓝移将大于速度红移。于是,我们将在一定空间范
围里观测到许多蓝移天体。
由于我们的周围都是红移,所以银河系位于宇宙的核心区域。
5. 关于红移及蓝移
红移和蓝移与速度是没关系的,是频率的变化体现在光谱上的谱线移动。
比方说,一颗星发出的光,光速到达地球,我们可以观测它的光谱,但当它运动,由于多普勒效应,频率就会发生变化(在速度不变的前提下),所以谱线就会移动。
所谓红移,最初是针对机械波而言的,即一个相对于观察者运动着的物体离的越远发出的声音越浑厚(波长比较长),相反离的越近发出的声音越尖细(波长比较短)。
后来,美国天文学家哈勃把一个天体的光谱向长波(红)端的位移叫做多普勒红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。
而蓝移,当光源向观测者接近时,接受频率增高,相当于向蓝端偏移,称为“蓝移”。
6. 什么是红移和紫移
红移(red shift)
一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。
光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。
蓝移
就是最大吸收波长向短波长方向。蓝移(或紫移,hypsochromic shift or blue shift)吸收峰向短波长移动。空间阻碍使共轭体系破坏,max蓝移, max减小。
如-COOR基团,能产生紫外-可见吸收的官能团,如一个或几个不饱和基团,或不饱和杂原子基团,C=C, C=O, N=N, N=O等称为生色团(chromophore)
助色团(auxochrome):本身在200 nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。
一般助色团为具有孤对电子的基团,如-OH, -NH2, -SH等。
含有生色团或生色团与助色团的分子在紫外可见光区有吸收并伴随分子本身电子能级的跃迁,不同官能团吸收不同波长的光。
7. 红移和哪个现象相近
红移现像和我们乘坐汽车,有时对面而来汽车的喇叭声变得越来越尖,这是声波变短,音频变高;而当汽车擦肩而过,喇叭声便开始变粗,这是由于喇叭产生的声波,逐渐远离我们而去,使声波波长由短变长的结果。声波是这样,光波也是相近,背离我们远去的星球,发出来的光波波长也会变长,所以会向可见光光波最长的红端移动。
8. 什么是红移和蓝移
多普勒效应是指物体辐射的波长因为光源和观测者的相对运动而产生变化,在运动的波源前面,波被压缩,波长变得较短,频率变得较高 ,在运动的波源后面,产生相反的效应,波长变得较长,频率变得较低 ,波源的速度越高,所产生的效应越大,根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度,恒星光谱线的位移显示恒星循着观测方向运动的速度,这种现象称为多普勒效应。
光是一种电磁波,当光源远离观测者时,接受到的光波频率比其固有频率低,即向红端偏移,这种现象被称为“红移”;当光源接近观测者时,接受频率增高,相当于向蓝端偏移,称为“蓝移”。
9. 谱线的红移和蓝移是什么意思
红移——一个天体的光谱向长波(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移。
http://ke..com/view/6268.htm
蓝移——当光源向观测者接近时,接受频率增高,相当于向蓝端偏移,称为“蓝移”,也就是最大吸收波长向短波长方向。
http://ke..com/view/74766.htm