當前位置:首頁 » 皮膚症狀 » 紅發加雀斑
擴展閱讀
汗泡濕疹吃什麼好 2025-05-16 23:22:04
小孩子濕疹長什麼樣的 2025-05-16 23:22:04
濕疹嬰兒喝什麼奶粉好 2025-05-16 23:18:25

紅發加雀斑

發布時間: 2022-04-24 09:51:47

① 為什麼說紅頭發易患皮膚癌

一個國際團隊7月12日在《自然·通訊》期刊 發表報告說,他們發現一種與紅發、雀斑等身體特徵相關的基因變異會增加相關人群患皮膚癌的風險。

英國韋爾科姆基金會下屬桑格研究所和 利茲大學等機構研究人員報告說,全球人口中有1%到2%的人天生紅發,而在英國這一比例達到6%。分析顯示,這與一個名為MC1R的基因出現變異有 關,如果來自父母的兩個基因拷貝都有變異,就會影響體內黑色素的生成,最終導致頭發顏色呈現紅色,同時還會出現雀斑等特徵。

由於黑色 素異常可能導致黑色素瘤這種皮膚癌,研究人員還分析了超過400名來自不同地區黑色素瘤患者的基因數據。結果發現,MC1R基因變異會增加攜帶者患 黑色素瘤的風險,與沒有這種基因變異的人相比,攜帶該基因變異的人出現相關腫瘤突變的風險要高出42%。

報告作者之一、桑格研究所學者 戴維·亞當斯說,此前就有觀點認為,天生紅發的人更容易患皮膚癌,新研究證實了紅發與皮膚癌都與特定基因變異有關。

② 哪有數學家的故事啊 老著急了 快一點啊!!! 這麽么曾呢!!! 真是的 急死了 超急

高斯
德國大數學家高斯( Carl Friedrich Gauss 1777-1855 ) 是德國最偉大,最傑出的科學家,如果單純以他的數學成就來說,很少在一門數學的分支里沒有用到他的一些研究成果。

貧寒家庭出身

高斯的祖父是農民,父親除了從事園藝的工作外,也當過各色各樣的雜工,如護堤員、建築工等等。父親由於貧窮,本身沒有受過什麼教育。
母親在三十四歲時才結婚,三十五歲生下了高斯。她是一名石匠的女兒,有一個很聰明的弟弟,他手巧心靈是當地出名的織綢能手,高斯的這位舅舅,對小高斯很照顧,有機會就教育他,把他所知道的一些知識傳授給他。而父親可以說是一名」大老粗」,認為只有力氣能掙錢,學問對窮人是沒有用的。
高斯在晚年喜歡對自己的小孫兒講述自己小時候的故事,他說他在還不會講話的時候,就已經學會計算了。
他還不到三歲的時候,有一天他觀看父親在計算受他管轄的工人們的周薪。父親在喃喃的計數,最後長嘆的一聲表示總算把錢算出來。
父親念出錢數,准備寫下時,身邊傳來微小的聲音:「爸爸!算錯了,錢應該是這樣.....。」父親驚異地再算一次,果然小高斯講的數是正確的,奇特的地
方是沒有人教過高斯怎麼樣計算,而小高斯平日靠觀察,在大人不知不覺時,他自己學會了計算。
另外一個著名的故事亦可以說明高斯很小時就有很快的計算能力。當他還在小學讀書時,有一天,算術老師要求全班同學算出以下的算式:
1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?
在老師把問題講完不久,高斯就在他的小石板上端端正正地寫下答案5050,而其他孩子算到頭昏腦脹,還是算不出來。最後只有高斯的答案是正確無誤。
原來 1 +100= 101
2 + 99 = 101
3 + 98 = 101
.
.
.
50 + 51 = 101
前後兩項兩兩相加,就成了50對和都是 101的配對了
即 101 × 50 = 5050。
按:今用公式
表示 1 + 2 + ... + n
高斯的家裡很窮,在冬天晚上吃完飯後,父親就要高斯上床睡覺,這樣可以節省燃料和燈油。高斯很喜歡讀書,他往往帶了一捆蕪菁上他的頂樓去,他把蕪菁當中挖空,塞進用粗棉捲成的燈芯,用一些油脂當燭油,於是就在這發出微弱光亮的燈下,專心地看書。等到疲勞和寒冷壓倒他時,他才鑽進被窩睡覺。
高斯的算術老師本來是對學生態度不好,他常認為自己在窮鄉僻壤教書是懷才不遇,現在發現了「神童」,他是很高興。但是很快他就感到慚愧,覺得自己懂的數學不多,不能對高斯有什麼幫助。
他去城裡自掏腰包買了一本數學書送給高斯,高斯很高興和比他大差不多十歲的老師的助手一起學習這本書。這個小孩和那個少年建立起深厚的感情,他們花許多時間討論這裡面的東西。
高斯在十一歲的時候就發現了二項式定理 ( x + y )n的一般情形,這里 n可以是正負整數或正負分數。當他還是一個小學生時就對無窮的問題注意了。
有一天高斯在走回家時,一面走一面全神貫注地看書,不知不覺走進了布倫斯維克 ( Braunschweig ) 宮的庭園,這時布倫斯維克公爵夫人看到這個小孩那麼喜歡讀書,於是就和他交談,她發現他完全明白所讀的書的深奧內容。
公爵夫人回去報告給公爵知道,公爵也聽說過在他所管轄的領地有一個聰明小孩的故事,於是就派人把高斯叫去宮殿。
費迪南公爵 ( Duke Ferdinand ) 很喜歡這個害羞的孩子,也賞識他的才能,於是決定給他經濟援助,讓他有機會受高深教育,費迪南公爵對高斯的照顧是有利的,不然高斯的父親是反對孩子讀太多書,他總認為工作賺錢比去做什麼數學研究是更有用些,那高斯又怎麼會成材呢?

高斯的學校生涯
在費迪南公爵的善意幫助下,十五歲的高斯進入一間著名的學院(程度相當於高中和大學之間)。在那裡他學習了古代和現代語言,同時也開始對高等數學作研究。
他專心閱讀牛頓、歐拉、拉格朗日這些歐洲著名數學家的作品。他對牛頓的工作特別欽佩,並很快地掌握了牛頓的微積分理論。
795年10月他離開家鄉的學院到哥庭根 ( Gottingen )去念大學。哥庭根大學在德國很有名,它的豐富數學藏書吸引了高斯。許多外國學生也到那裡學習語言、神學、法律或醫學。這是一個學術風氣很濃厚的城市。
高斯這時候不知道要讀什麼系,語言系呢還是數學系?如果以實用觀點來看,學數學以後找生活是不大容易的。
可是在他十八歲的前夕,現在數學上的一個新發現使他決定終生研究數學。這發現在數學史上是很重要的。
我們知道當 n ≥ 3 時,正 n 邊形是指那些每一邊都相等,內角也一樣的 n 邊多邊形。
希臘的數學家早知道用圓規和沒有刻度的直尺畫出正三、四、五、十五邊形。但是在這之後的二千多年以來沒有人知道怎麼用直尺和圓規構造正十一邊、十三邊、十四邊、十七邊多邊形。
還不到十八歲的高斯發現了:一個正 n 邊形可以用直尺和圓規畫出當且僅當 n 是底下兩種形式之一:
k= 0,1,2, ...
十七世紀時法國數學家費馬 ( Fermat ) 以為公式
在 k = 0, 1, 2, 3, ....給出素數。(事實上,目前只確定 F0,F1,F2,F4是質數,F5不是)。
高斯用代數方法解決了二千多年來的幾何難題,而且找到正十七邊形的直尺與圓規的作法。他是那麼的興奮,因此決定一生研究數學。據說,他還表示希望死後在他的墓碑上能刻上一個正十七邊形,以紀念他少年時最重要的數學發現。
1799年高斯呈上他的博士論文,這論文證明了代數一個重要的定理:任何一元代數方程都有根。這結果數學上稱為」代數基本定理」。
事實上在高斯之間有許多數學家認為已給出了這個結果的證明,可是沒有一個證是嚴密的,高斯是第一個數學家給出嚴密無誤的證明,高斯認為這個定理是很重要的,在他一生中給了一共四個不同的證明。高斯沒有錢印刷他的學位論文,還好費迪南公爵給他錢印刷。
二十歲時高斯在他的日記上寫,他有許多數學想法出現在腦海中,由於時間不定,因此只能記錄一小部份。幸虧他把研究的成果寫成一本叫<算學研究>,並且在二十四歲時出版,這書是用拉丁文寫,原來有八章,由於錢不夠,只好印七章,這書可以說是數論第一本有系統的著作,高斯第一次介紹」同餘」這個概念。

③ 有種稀有的人種百年之後可能會滅絕,究竟是哪一種人

世界上有很多不同的人種,其中最常見的就是黑、白、黃三種。這些人種各有各的特點,其中發色就是其中之一。很多人天生就是黑色或者是黃色頭發,但是大家知道還有一種就是天生紅色頭發的人嗎?這種人天生紅發的人現在被人們稱之為「最稀有」的人種,因為從很久以前到現在,紅發人口數量正在慢慢減少,目前紅發人口在全球人口數量僅佔2%。

所以有關專家也是預測,由於被歧視的原因,會導致紅發人生育率降低,甚至在100年之後,他們將會徹底在世界上滅絕,而對此,大家又是怎麼看待的呢?

④ 人類中「最稀有」的品種,僅剩3000多人,是什麼導致他們人數這么稀少

人類目前已知最稀有的品種是“紅發人”,在世界上大概只有3000多人,因為"紅發人“並不是一個有特性的種族群體,他們只是基因突變的產物,所以”紅發人“人數並不是很多,而且他們分布在世界各個角落,很難相聚在一起,所以”紅發人“的這一人種的數目很難增加,不過也不會滅絕。

”紅發人“的明顯特色是“紅發.藍眼睛.還有滿臉的雀斑'。很多看到見過他們的人都形容他們有火焰一般的頭發,藍寶石般靚麗的眼睛,簡直 就是從動漫裡面走出來的王子與公主。雖然有些人認為他們臉上明顯的雀斑不是很好看,但也有些另類的人非常欣賞,他們就是攝影師,曾經就由一位攝影師,拍攝了一組紅發雀斑女孩的影集,他稱贊這些“紅發少女”就應該是模特界的寵兒,耀眼而不張揚,也希望有更多的人能夠欣賞保護她們的美。

⑤ 《哈利·波特》中的費雷德·韋斯萊的介紹

在《哈利波特與死亡聖器》第31章霍格沃茨的戰斗中犧牲。
詳情:
弗雷德和珀西後退著出現了,兩人都在跟帶兜帽的蒙面大漢決斗。
哈利、羅恩和赫敏跑上前去相助,一道道強光射向四面八方,跟珀西格鬥的那個人快速後退,他的兜帽滑落了,他們看見他高高的額頭和雜色的頭發。
「你好,部長!」珀西大喊一聲,沖著辛克尼斯乾脆利落地發了個惡咒,辛克尼斯丟掉魔杖,用手抓住長袍的胸口處,顯然難受極了。「我說過我要辭職的吧?」珀西補充了一句。
「你在開玩笑,珀西!」弗雷德喊道,跟他搏鬥的那個食死徒被三個昏迷咒的重擊下癱倒了。辛克尼斯倒在地上,全身冒出許多小釘子,好像正在變成一種海膽。弗雷德高興地看著珀西。
「你真的是在開玩笑,珀西……我好像很久沒聽你開玩笑了,自從你——」
空氣突然爆炸了。他們剛才聚攏在一起,哈利、羅恩、赫敏、弗雷德、珀西,還有他們腳邊的兩個食死徒,一個中了昏迷咒,一個中了變形咒;在危險似乎暫未來臨的一瞬間,世界被撕裂了。哈利覺得自己飛到了了空中,他只能死死地抓住那根細細的木棍——他唯一的武器,並用雙臂護住腦袋:他聽見了同伴們的大喊和慘叫,卻無法知道他們到底怎麼了——
然後,世界漸漸化為痛苦和一片模糊:他的半個身子都被廢墟埋住了,走廊剛才遭到了可怕的襲擊。寒冷的空氣告訴他,城堡的一側被炸飛了,面頰上熱乎乎的、黏稠的感覺告訴他,他正在大量流血。接著,他聽見一聲令他揪心的慘叫,那叫聲里表達的痛苦,絕不是火焰或咒語能夠引起的。哈利搖搖晃晃地站起身,心頭極度恐懼,比他這一天、這一輩子的任何時候都要恐懼……
赫敏從廢墟中掙扎著站起來,三個紅頭發的人聚在牆壁被炸飛的地方。哈利抓住赫敏的手,兩人跌跌撞撞的走過碎石頭和碎木片。
「不——不——不!」有人在大喊,「不!弗雷德!不!」
珀西搖晃著他的弟弟,羅恩跪在他們身邊,弗雷德的兩隻眼睛空洞地瞪著,臉上還留著最後的一絲笑容。

⑥ 紅頭發的人往往雀斑較多,這說明了什麼可以介紹詳細點嗎

紅頭發的人,往往面部雀斑多,這現象說明控制這兩對性狀的基因之間具有連鎖的關系

⑦ 數學家中學時期的故事

數學家的故事——祖沖之

祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
回答者: 朵★朵rr - 魔法學徒 一級 8-5 20:38
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心呀!1966年屈居於六平方米小屋的陳景潤,借一盞昏暗的煤油燈,伏在床板上,用一支筆,耗去了幾麻袋的草稿紙,居然攻克了世界著名數學難題「哥德巴赫猜想」中的(1+2),創造了距摘取這顆數論皇冠上的明珠(1+ 1)只是一步之遙的輝煌。他證明了「每個大偶數都是一個素數及一個不超過兩個素數的乘積之和」,使他在哥德巴赫猜想的研究上居世界領先地位。這一結果國際上譽為「陳氏定理」,受到廣泛徵引。這項工作還使他與王元、潘承洞在1978年共同獲得中國自然科學獎一等獎。他研究哥德巴赫猜想和其他數論問題的成就,至今,仍然在世界上遙遙領先。世界級的數學大師、美國學者阿 ·威爾(A�Weil)曾這樣稱贊他:「陳景潤的每一項工作,都好像是在喜馬拉雅山山巔上行走。

高斯
印象中曾聽過一個故事:高斯是位小學二年級的學生,有一天他的數學老師因為事情已處理了一大半,雖然上課了,仍希望將其完成,因此打算出一題數學題目給學生練習,他的題目是:1+2+3+4+5+6+7+8+9+10=?,因為加法剛教不久,所以老師覺得出了這題,學生肯定是要算蠻久的,才有可能算出來,也就可以藉此利用這段時間來處理未完的事情,但是才一轉眼的時間,高斯已停下了筆,閑閑地坐在那裡,老師看到了很生氣的訓斥高斯,但是高斯卻說他已經將答案算出來了,就是55,老師聽了下了一跳,就問高斯如何算出來的,高斯答道,我只是發現1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和還是11,又11+11+11+11+11=55,我就是這么算的。高斯長大後,成為一位很偉大的數學家。 高斯小的時候能將難題變成簡易,當然資質是很大的因素,但是他懂得觀察,尋求規則,化難為簡,卻是值得我們學習與效法的。

高斯
印象中曾聽過一個故事:高斯是位小學二年級的學生,有一天他的數學老師因為事情已處理了一大半,雖然上課了,仍希望將其完成,因此打算出一題數學題目給學生練習,他的題目是:1+2+3+4+5+6+7+8+9+10=?,因為加法剛教不久,所以老師覺得出了這題,學生肯定是要算蠻久的,才有可能算出來,也就可以藉此利用這段時間來處理未完的事情,但是才一轉眼的時間,高斯已停下了筆,閑閑地坐在那裡,老師看到了很生氣的訓斥高斯,但是高斯卻說他已經將答案算出來了,就是55,老師聽了下了一跳,就問高斯如何算出來的,高斯答道,我只是發現1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和還是11,又11+11+11+11+11=55,我就是這么算的。高斯長大後,成為一位很偉大的數學家。 高斯小的時候能將難題變成簡易,當然資質是很大的因素,但是他懂得觀察,尋求規則,化難為簡,卻是值得我們學習與效法的。

華羅庚一生都是在國難中掙扎。他常說他的一生中曾遭遇三大劫難。自先是在他童年時,家貧,失學,患重病,腿殘廢。第二次劫難是抗日戰爭期間,孤立閉塞,資料圖書缺乏。第三次劫難是「文化大革命」,家被查抄,手槁散失,禁止他去圖書館,將他的助手與學生分配到外地等。在這等惡劣的環境下,要堅持工作,做出成就,需付出何等努力,需怎樣堅強的毅力是可想而知的.
早在40年代,華羅庚已是世界數論界的領袖數學家之一。但他不滿足,不停步,寧肯另起爐灶,離開數論,去研究他不熟悉的代數與復分析,這又需要何等的毅力尋勇氣!

華羅庚善於用幾句形象化的語言將深刻的道理說出來。這些語言簡意深,富於哲理,令人難忘。早在 SO年代,他就提出「天才在於積累,聰明在於勤奮」。 華羅庚雖然聰明過人,但從不提及自己的天分,而把比聰明重要得多的「勤奮」與「積累」作為成功的鑰匙,反復教育年青人,要他們學數學做到「拳不離手,曲不離口」,經常鍛煉自己。50年代中期,針對當時數學研究所有些青年,做出一些成果後,產生自滿情緒,或在同一水平上不斷寫論文的傾問,華羅庚及時提出:「要有速度,還要有加速度。」所謂「速度」就是要出成果,所謂『加速度」就是成果的質量要不斷提高。「文化大革命」剛結束的,一些人,特別是青年人受到不良社會風氣的影響,某些部門,急於求成,頻繁地要求報成績、評獎金等不符合科學規律的做法,導致了學風敗壞。表現在粗製濫造,爭名奪利,任意吹噓。 1978年他在中國數學會成都會議上語重心長地提出:「早發表,晚評價。」後來又進一步提出:「努力在我,評價在人。」這實際上提出了科學發展及評價科學工作的客觀規律,即科學工作要經過歷史檢驗才能逐步確定其真實價值,這是不依賴人的主觀意志為轉移的客 觀規律。」

華羅庚從不隱諱自己的弱點,只要能求得學問, 他寧肯暴露弱點。在他古稀之年去英國訪問時,他把成語「不要班門弄斧」改成「弄斧必到班門」來鼓勵自己。實際上,前一句話是要人隱諱缺點,不要暴露。華羅庚每到一個大學,是講別人專長的東西,從而得到幫助呢,還是對別人不專長的,把講學變成形式主義走過場?華羅庚選擇前者,也就是「弄等必到班門」。早在50年代,華羅庚在《數論導引》的序言里就把搞數學比作下棋,號召大家找高手下,即與大數學家較量。中國象棋有個規則,那就是「觀棋不語真君子,落子無悔大丈夫」。1981年,在淮南煤礦的一次演講中,華羅康指出:「觀棋不語非君子,互相幫助;落子有悔大丈夫,改正缺點。」意思是當你見到別人搞的東西有毛病時,一定要說,另一方面,當你發現自己搞的東西有毛病時,一定要修正。這才是「君子」與「丈夫」。針對一些人遇到困難就退縮,缺乏堅持到底的精神,華羅庚在給金壇中學寫的條幅中寫道:「人說不到黃河心不死,我說到了黃河心更堅。」

人老了,精力要衰退,這是自然規律。華羅庚深知年齡是不饒人的。1979年在英國時,他指出:「村老易空,人老易松,科學之道,戒之以空,戒之以松,我願一輩子從實以終。」這也可以說是他以最大的決心向自己的衰老作抗衡的「決心書」,以此鞭策他自己。在華羅索第二次心肌梗塞發病的,在醫院中仍堅持工作,他指出:「我的哲學不是生命盡量延長,而是晝多做工作。」生病就該聽醫生的話,好好休息。但他這種頑強的精神還是可貴的。

總之,華羅庚的一切論述都貫穿一個總的精神,就是不斷拼搏,不斷奮進。

祖沖之(429-500)的祖父名叫祖昌,在宋朝做了一個管理朝廷建築的長官。祖沖之長在這樣的家庭里,從小就讀了不少書,人家都稱贊他是個博學的青年。他特別愛好研究數學,也喜歡研究天文歷法,經常觀測太陽和星球運行的情況,並且做了詳細記錄。

宋孝武帝聽到他的名氣,派他到一個專門研究學術的官署「華林學省」工作。他對做官並沒有興趣,但是在那裡,可以更加專心研究數學、天文了。

我國歷代都有研究天文的官,並且根據研究天文的結果來制定歷法。到了宋朝的時候,歷法已經有很大進步,但是祖沖之認為還不夠精確。他根據他長期觀察的結果,創制出一部新的歷法,叫做「大明歷」(「大明」是宋孝武帝的年號)。這種歷法測定的每一回歸年(也就是兩年冬至點之間的時間)的天數,跟現代科學測定的相差只有五十秒;測定月亮環行一周的天數,跟現代科學測定的相差不到一秒,可見它的精確程度了。 公元462年,祖沖之請求宋孝武帝頒布新歷,孝武帝召集大臣商議。那時候,有一個皇帝寵幸的大臣戴法興出來反對,認為祖沖之擅自改變古歷,是離經叛道的行為。 祖沖之當場用他研究的數據回駁了戴法興。戴法興依仗皇帝寵幸他,蠻橫地說:「歷法是古人制定的,後代的人不應該改動。」祖沖之一點也不害怕。他嚴肅地說:「你如果有事實根據,就只管拿出來辯論。不要拿空話嚇唬人嘛。」宋孝武帝想幫助戴法興,找了一些懂得歷法的人跟祖沖之辯論,也一個個被祖沖之駁倒了。但是宋孝武帝還是不肯頒布新歷。直到祖沖之死了十年之後,他創制的大明歷才得到推行。

盡管當時社會十分動亂不安,但是祖沖之還是孜孜不倦地研究科學。他更大的成就是在數學方面。他曾經對古代數學著作《九章算術》作了注釋,又編寫一本《綴術》。他的最傑出貢獻是求得相當精確的圓周率。經過長期的艱苦研究,他計算出圓周率在3.1415926和3.1415927之間,成為世界上最早把圓周率數值推算到七位數字以上的科學家。

祖沖之在科學發明上是個多面手,他造過一種指南車,隨便車子怎樣轉彎,車上的銅人總是指著南方;他又造過「千里船」,在新亭江(在今南京市西南)上試航過,一天可以航行一百多里。他還利用水力轉動石磨,舂米碾穀子,叫做「水碓磨」。

祖沖之晚年的時候,掌握宋朝禁衛軍的蕭道成滅了宋朝。
在我國北宋時代,有一位博學多才、成就顯著的科學家,他就是沈括(1031~1095)。

沈括,字存中,宋仁宗天聖九年(公元1031年)生於浙江錢塘(今浙江杭州市)一官僚家庭。他的父親沈周(字望之)曾在泉州、開封、江寧做過地方官。母親許氏,是一個有文化教養的婦女。

沈括自幼勤奮好讀,在母親的指導下,十四歲就讀完了家中的藏書。後來他跟隨父親到過福建泉州、江蘇潤州(今鎮江)、四川簡州(今簡陽)和京城開封等地,有機會接觸社會,對當時人民的生活和生產情況有所了解,增長了不少見聞,也顯示出了超人的才智。

沈括精通天文、數學、物理學、化學、生物學、地理學、農學和醫學;他還是卓越的工程師、出色的軍事家、外交家和政治家;同時,他博學善文,對方誌律歷、音樂、醫葯、卜算等無所不精。他晚年所著的《夢溪筆談》詳細記載了勞動人民在科學技術方面的卓越貢獻和他自己的研究成果,反映了我國古代特別是北宋時期自然科學達到的輝煌成就。《夢溪筆談》不僅是我國古代的學術寶庫,而且在世界文化史上也有重要的地位。

日本數學家三上義夫曾經說:沈括這樣的人在全世界數學史上找不到,只有中國出了這么一個。英國著名科學史專家李約瑟博士稱沈括的《夢溪筆談》是中國科學史上的坐標。

高斯是德國數學家、天文學家和物理學家,被譽為歷史上偉大的數學家之一,和阿基米德、牛頓並列,同享盛名。

高斯1777年4月30日生於不倫瑞克的一個工匠家庭,1855年2月23日卒於格丁根。幼時家境貧困,但聰敏異常,受一貴族資助才進學校受教育。1795~1798年在格丁根大學學習1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文台台長直至逝世。

高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分注重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。

瑞士數學家歐拉早年曾受過良好的神學教育,成為數學家後在俄國宮廷供職。

有一次,俄國女皇邀請法國哲學家狄德羅訪問她的宮廷。狄德羅試圖通過使朝臣改信無神論來證明他是值得被邀請的。女皇厭倦了,她命令歐拉去讓這位哲學家閉嘴。於是,狄德羅被告知,一個有學問的數學家用代數證明了上帝的存在,要是他想聽的話,這位數學家將當著所有朝臣的面給出這個證明。狄德羅高興地接受了挑戰。

第二天,在宮廷上,歐拉朝狄德羅走去,用一種非常肯定的聲調一本正經地說:「先生,,因此上帝存在。請回答!」對狄德羅來說,這聽起來好像有點道理,他困惑得不知說什麼好。周圍的人報以縱聲大笑,使這個可憐的人覺得受了羞辱。他請求女皇答應他立即返回法國,女皇神態自若地答應了。

就這樣,一個偉大的數學家用欺騙的手段「戰勝」了一個偉大的哲學家。

拉普拉斯和拉格朗日是19世紀初法國的兩位數學家。拉普拉斯在數學上十分偉大,在政治上卻是一個十足的小人,每次政權更迭,他都能夠見風使舵,毫無政治操守可言。拉普拉斯曾把他的巨著《天體力學》獻給拿破崙。拿破崙想惹惱拉普拉斯,責備他犯了一個明顯的疏忽:「你寫了一本關於世界體系的書,卻一次也沒有提到宇宙的創造者——上帝。」

拉普拉斯反駁說:「陛下,我不需要這樣一個假設。」

當拿破崙向拉格朗日復述這句話時,拉格朗日說:「啊,但那是一個很好的假設,它說明了許多問題。」

兩個神童19世紀初,在大西洋兩岸出現了兩個神童:一個是英國少年哈密頓,另一個是美國孩子科爾伯恩哈密頓的天才表現在語言學上,他8歲時就已經掌握了英文、拉丁文、希臘文和希伯萊文;12歲時已熟練地掌握了波斯語、阿拉伯語、馬來語和孟加拉語,只是由於沒有教科書,他才沒有學習漢語。科爾伯恩則在數學上表現出神奇的天才,小時候,有人問他4294967297是否是素數時,他立刻回答不是,因為它有641作為除數。類似的例子多得不勝枚舉,但他不能解釋他得出正確結論的過程。

人們把兩個神童帶到一起,這次會面是奇妙的,現在已經無法確知他們交談了什麼,但結果卻是完全出人意料的:科爾伯恩的數學天賦完全「移植」給了哈密頓;哈密頓放棄了語言學,投身數學,成為愛爾蘭歷史上最偉大的數學家。

至於科爾伯恩,他的天才漸漸消失了。

數學家之死挪威數學家阿貝爾22歲的時候就對數學的發展做出了重大的貢獻,但並不為當時的數學界所接受。他過著窮困潦倒的生活,這嚴重地影響了他的健康,他得了肺結核,這在當時是絕症。在最後的幾個星期,他一直在考慮他的未婚姐的未來。他寫信給他最好的朋友基爾豪:「她並不美麗,有著一頭紅發和雀斑,但她是一個可愛的女子。」雖然基爾豪和肯普從未見過面,但阿貝爾希望他們兩個能夠結婚。

肯普小姐照料阿貝爾度過了生命的最後時刻。在葬禮上,她與專程趕來的基爾豪相遇了。基爾豪幫助她克服了悲傷,他們相愛並結了婚。正如阿貝爾所希望的那樣,基爾豪和肯普婚後十分幸福,他們經常到阿貝爾墓前去懷念他。隨著歲月的流逝,他們發現越來越多的人從各地趕來,為阿貝爾在數學上的貢獻向他表達他們遲到的敬意,而他們只是這一朝聖隊伍中的一對普通的朝聖者。

1832年5月29日,法國年輕氣盛的伽羅瓦為了所謂的「愛情與榮譽」打算和另外一個人決斗。他知道對手的槍法很好,自己獲勝的希望很小,很可能會死去。他問自己,如何度過這最後的夜晚?在這之前,他曾寫過兩篇數學論文,但都被權威輕蔑地拒絕了:一次是被偉大的數學家柯西;另一次是被神聖的法蘭西科學院他頭腦中的東西是有價值的。整個晚上,他把飛逝的時間用來焦躁地一氣寫出他在科學上的遺言。在死亡之前盡快地寫,把他豐富的思想中那些偉大的東西盡量寫出來。他不時中斷,在紙邊空白處寫上「我沒有時間,我沒有時間」,然後又接著寫下一個極其潦草的大綱。

他在天亮之前那最後幾個小時寫出的東西,一勞永逸地為一個折磨了數學家們幾個世紀的問題找到了真正的答案,並且開創了數學的一個極為重要的分支——群論。

第二天上午,在決斗場上,他被打穿了腸子。死之前,他對在他身邊哭泣的弟弟說:「不要哭,我需要足夠的勇氣在20歲的時候死去。」他被埋葬在公墓的普通壕溝內,所以今天他的墳墓已無蹤跡可尋。他不朽的紀念碑是他的著作,由兩篇被拒絕的論文和他在死前那個不眠之夜寫下的潦草手稿組成。

數學家的問題費馬是17世紀法國圖盧茲議會的議員,一個誠實而勤奮的人,同時也是歷史上傑出的數學業余愛好者。在其一生中,他給後代留下了大量極其美妙的定理;同時,由於一時的疏忽,也向後世的數學家們提了嚴峻的挑戰。

費馬有個習慣,他在讀書的時候喜歡把思考的結果簡略。有一次,他在閱讀時寫下了這樣的話:「……將一個高於2次的冪分為兩個同次的冪,這是不可能的。關於此,我確信已發現一種美妙的證法,可惜這里空白的地方太小,寫不下。」這個定理現在被命名為「費馬大定理」,即:不可能有滿足xn+yn=zn這就是費馬對後世的挑戰。為了尋找這個定理的證明,後世無數的數學家發起了一次又一次的沖鋒,但都敗下陣來。1908年,一位德國富翁曾經懸賞10萬馬克的巨款,獎勵第一個對「費馬大定理」完全證明的人。自此定理提出後,數學家們奮鬥了300多年,還是沒有證出來。但這個定理肯定存在,費馬知道它。

數學上,「費馬大定理」已成為一座比珠穆朗瑪峰更高的山峰,人類的數學智慧只有一次達到過這樣的高度,從那以後,再也沒有達到過。